Воздушные компрессоры в открытом космосе

Воздушные компрессоры в космосе являются незаметными участниками каждой миссии. Расскажем немного о том, как космические агентства используют сжатый воздух в космическом пространстве.

Если бы Вы хотели полететь на Луну, Вы бы, вероятно, много думали о жидком топливе в гигантских баках и о большом количестве тяги. Но, если Вы забудете добавить сжатый воздух, то никуда не доберетесь ни безопасно, ни эффективно. Воздушные компрессоры в космосе обеспечивают всех космонавтов воздухом для дыхания от подъема космического корабля,в течение всего пути и до посадки.

Воздушные компрессоры в системах космических кораблей играют важную роль в будущем путешествий, поскольку они позволяют системам быть умнее, эффективнее и легче. В то время как в космической индустрии постоянно внедряются новые технологии, применение сжатого воздуха остается стабильным.

Тепловые насосы: использование воздушных компрессоров в космосе

Безмасляные компрессоры в настоящее время используются системой тепловых насосов Международной космической станции, так как они нечувствительны к гравитации. Применением таких компрессоров решается проблема утечек масла, а также проблемы иного характера, присущие маслозаполненным компрессорам.

Космонавты используют сжатый воздух в космическом пространстве для управления подачей воздуха, проведения экспериментов, обеспечения эффективной работы ускорителей, чтобы транспортные средства и космические станции оставались на орбите и поддерживали комфортную температуру для всех находящихся на борту.

Например, жидкости, которые обычно смешиваются и легко сочетаются на Земле, в космосе разбиваются на отдельные шарики жидкости каждого вида. Без гравитации Земли разделение этих жидкостей может представлять опасность и вызывать сбои в работе традиционного теплового насоса или зависящих от жидкости воздушных компрессоров в космосе. Достижения в области технологий тепловых насосов привели к созданию блоков с низким энергопотреблением и чрезвычайно высокой эффективностью, что делает их идеальными для различных систем космических станций.

Воздушные и газовые компрессоры нашли свое применение в космосе, потому что они предлагают долгий срок службы и надежное использование в течение многих лет, особенно по сравнению с тепловыми насосами, которым требуется жидкость для охлаждения. Системы на основе жидкостей имеют такие проблемы, как кавитация, но их использование в космосе представляет большой риск в космосе.

Использование сжатого воздуха в ракетных двигателях

Сжатый воздух играет большую роль в том, чтобы ракеты исправно достигали скоростей не менее 8 км/сек для преодоления силы земного притяжения и вывода космических аппаратов на орбиту Земли.

Сегодня турбинные двигатели приводят в действие подавляющее большинство самолетов военного и частного назначения. В каждой турбине есть воздушный компрессор, который увеличивает давление воздуха, прежде чем он попадет в камеру сгорания. Чем лучше работает воздушный компрессор, тем выше производительность двигателя, особенно в момент сгорания топлива. В двигателях ракет в качестве насосов применяются центробежные компрессоры. Многие двигатели, от турбореактивных до форсажных, будут использовать сжатый воздух, чтобы качественно воспламенить топливо.

Ракетные двигатели и сжатый воздух

В топливных баках ракет хранится значительное количество жидкого водорода и кислорода. С помощью системы насосов и клапанов обе эти сжатые жидкости выталкиваются в камеру сгорания, где смесь воспламеняется и служит для приведения ракеты в движение.

По сути, воздушный компрессор является незаметным компонентом, который обеспечивает смешивание топлива с правильной скоростью и его перемещение в камеру сгорания, поэтому ракетный двигатель создает тягу, необходимую для выхода в космическое пространство.

Двигатели шаттла NASA

Космические челноки NASA используют три главных двигателя вместе с твердотопливным ракетным ускорителем для создания ускорения, необходимого для вывода космического челнока и других транспортных средств в космическое пространство. Основные двигатели космического челнока сгорают во время старта и могут работать до 8,5 минут после запуска, что является типичной продолжительностью полета для космического челнока.

Для всех челночных двигателей требуются мощные воздушные компрессоры — центробежные компрессоры — для подачи сжатого воздуха в жидкое топливо с целью зажигания и контролируемого ускорения.

Когда челнок взлетает, он ускоряется, сжигая жидкий водород, который хранится при температуре минус 252,8 градуса по Цельсию, а также жидкий кислород. Воздушные компрессоры необходимы для бесперебойной работы. В гигантском оранжевом баке содержится примерно 2 миллиона литров этих жидкостей. Температура в камере сгорания основного двигателя поднимется до более чем 3315,6 градусов по Цельсию.

Шаттл будет сжигать жидкого топлива, количество которого достаточно, чтобы наполнить стандартный бассейн за 25 секунд. Во время этого ускорения турбины вращаются примерно в 13 раз быстрее, чем в Вашем автомобиле при езде по шоссе. Это означает, что центробежные компрессоры должны работать сверхэффективно, чтобы все работало надежно. Обеспечение ракеты сжатым воздухом сводится не только к тому, чтобы оторваться от земли, но и к поддержке систем жизнеобеспечения при подъеме в космос.

Центробежные компрессоры

Центробежные компрессоры используются во многих отраслях промышленности, в том числе в аэрокосмической отрасли, поскольку они имеют меньше частей, которые соприкасаются друг с другом, а также обеспечивают высокую энергоэффективность и значительно больший поток воздуха по сравнению с другими компрессорами того же размера.

Центробежные компрессоры работают, втягивая воздух в центр через вращающееся рабочее колесо. Радиальные лопасти вращаются и подают воздух, используя центробежную силу, повышая давление, а также создают кинетическую энергию. Как правило, эти типы воздушных компрессоров будут работать со сверхскоростными электродвигателями, которые приводят в движение рабочие колеса. Компрессору такого типа не потребуется много места или системы смазки на масляной основе.

Воздух для дыхания в космосе

Для дыхания в космосе, независимо от того, находитесь ли Вы на космической станции или в транспортном средстве, таком как челнок, требуется сжатый воздух различных типов и составов.

Атмосфера Земли состоит из 78% азота, 21% кислорода и 1% других газов при давлении в одну атмосферу. Космические аппараты перевозят жидкий кислород и жидкий азот в резервуарах под давлением, которое регулируется воздушным компрессором. Компрессоры также могут помочь поддерживать откачку этих газов из их резервуаров. На орбите космический челнок будет использовать только одну кислородно-азотную систему. Тем не менее, при взлете обе системы будут использоваться для поддержания максимальной работоспособности всех компонентов на борту.

Воздух, который циркулирует по космической станции, будет иметь несколько элементов, которые распространены в воздушных компрессорах и промышленных решениях для воздуха — особенно в системах очистки воздуха, которые мы часто видим в сочетании с компрессорами, используемыми при очистке сточных вод. Эти элементы включают в себя:

  • Теплообменники, которые распространены из-за экстремальных колебаний температуры на космических аппаратах. Они также являются основным элементом, используемым для сбора воды из воздуха, после чего воздух рециркулирует и вода поступает в специальный контейнер. В космосе при выдохе образуются пары воды, которые необходимо собирать, чтобы избежать повреждения оборудования!
  • Баллоны с диоксидом углерода, которые удаляют углекислый газ из воздуха. Они работают, позволяя воздуху взаимодействовать с гидроксидом лития. Компрессионные системы могут использоваться для перемещения этого воздуха через гидроксид лития в чрезвычайных ситуациях, когда существуют проблемы с качеством воздуха или когда определенные части станции отключены для ремонта.
  • Фильтры и канистры с активированным углем, которые используются для удаления запахов и мелких твердых частиц, а также для очистки воздуха после экспериментов. Это особенно важно при работе с летучими химическими веществами и при дегазации.

Что дальше?

В конце 2014 года NASA спроектировала новый тип баллона для сжатого воздуха и газов, который обеспечит высококачественный воздух для космонавтов на Международной космической станции.

Новая система представляет собой систему перезарядки азота и кислорода с резервуарами, которые предлагают взаимозаменяемое использование на космической станции. Резервуары и их приспособления предназначены для работы с существующей сетью подачи воздуха на МКС, но при необходимости могут использоваться и в специальных индивидуальных условиях.

Первоначально эти резервуары будут использоваться для замены и пополнения существующего воздуха. Работая с первоклассным воздушным компрессором, эти новые резервуары могут хранить воздух под давлением до 400 бар, что более чем вдвое превышает нагрузку предыдущего набора резервуаров. Это означает, что в каждом танке доступно намного больше воздуха, что сокращает количество случаев, когда грузовые корабли должны подавать воздух для пополнения запасов воздуха МКС. Одна интересная вещь заключается в том, что эти резервуары становятся чрезвычайно горячими при их заправке на Земле, и их нужно оставить на стенде на целый день, чтобы дать им остыть. Новые резервуары будут использоваться в системе охлаждения на основе аммиака МКС, а также в ряде других экспериментальных космических систем.

Возможно, в ближайшее время Вы не отправитесь в космос, но мы уверены, что и для Вас воздушные компрессоры могут сделать много полезных вещей. Мы поможем вам определить области, в которых Вы могли бы сэкономить время и деньги с помощью воздушного компрессора, подобрать винтовой компрессор, который Вам нужен, расскажем, как безопасно эксплуатировать Ваш воздушный компрессор.